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Passive and active bodies in vortex-street wakes
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We model the swimming of a finite body in a vortex street using vortex sheets
distributed along the body and in a wake emanating from its trailing edge. We
determine the magnitudes and distributions of vorticity and pressure loading on the
body as functions of the strengths and spacings of the vortices. We then consider the
motion of a flexible body clamped at its leading edge in the vortex street as a model
for a flag in a vortex street and find alternating bands of thrust and drag for varying
wavenumber. We consider a flexible body driven at its leading edge as a model for
tail-fin swimming and determine optimal motions with respect to the phase between
the body’s trailing edge and the vortex street. For short bodies maximizing thrust
or efficiency, we find maximum deflections shifted in phase by 90◦ from oncoming
vortices. For long bodies, leading-edge driving should reach maximum amplitude
when the vortices are phase-shifted from the trailing edge by 45◦ (to maximize thrust)
and by 135◦ (to maximize efficiency). Optimal phases for intermediate lengths show
smooth transitions between these values. The optimal motion of a body driven along
its entire length is similar to that of the model tail fin driven only at its leading
edge, but with an additional outward curvature near the leading edge. The similarity
between optimal motions forced at the leading edge and all along the body supports
the high performance attributed to fin-based motions.
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1. Introduction
Classical works on the mechanics of fish locomotion have studied how periodic

undulating motions along the fish body can generate propulsion in a quiescent
inviscid fluid (Lighthill 1969; Wu 1971). In many real situations the flow is disturbed
by upstream objects (including other swimming fish) before it encounters an individual
swimming fish. Recently Liao et al. (2003) studied a trout swimming in the alternating
(von Kármán) street behind an upstream D-cylinder while maintaining its streamwise
distance from the D-cylinder. They observed that the trout slaloms around each
oncoming vortex in the street, using a body–tail-fin swimming motion. Earlier,
Streitlien, Triantafyllou & Triantafyllou (1996) had studied a computational model
of a rigid aerofoil moving in an idealized von Kármán street. The foil sheds vortices
in discrete clusters according to the Kutta condition of finite velocity at the trailing
edge. They found that for certain parameters, the foil may gain larger thrust by
moving towards the oncoming vortices instead of slaloming around them. Other
experiments (Abrahams & Colgan 1987; Weimerskirch et al. 2001) and theoretical
models (Lissaman & Shollenberger 1970; Weihs 1973; Wu & Chwang 1975) have

† Email address for correspondence: alben@math.gatech.edu



96 S. Alben

studied the locomotion of arrays of birds and fish and have examined the energy
savings as a function of the spacings between individuals.

In Streitlien et al. (1996) and Liao et al. (2003), the swimming motion is frequency-
locked to the vortex street. The motion can then be characterized by the spatial phase
between the transverse displacement of the body (where it takes its maximum, or
at a particular location such as the trailing edge) and the vortex street. In another
work Alben (2009), we have studied the swimming of a periodic body in a vortex
street. Periodic boundary conditions simplify the equations considerably and allow
for exact solutions to certain optimal swimming problems and the determination of
the scalings of physical quantities of interest (such as thrust force and efficiency) with
respect to parameters. Forces on the body arise from the no-penetration condition,
which requires the normal motion of the fluid to match the normal motion of the
body. The consequent acceleration of fluid in the downstream direction provides a
thrust force on the body. This periodic model neglects the important phenomenon of
the shedding of vorticity by the sharp trailing edge of a finite body. Such vorticity
is an important contribution to the drag forces on a finite body (Saffman 1992). For
the periodic model, we have found that thrust is maximum when the phase difference
between the vortices and the body motion ranges from 0◦ to 90◦. It is 0◦ for a narrow
vortex street and transitions smoothly to 90◦ when the vortex street is moderately
wide (compared to the streamwise spacing between adjacent vortices).

In the present work, we consider a finite body which sheds a trailing vortex wake
in accordance with the Kutta condition (Batchelor 1967; Jones 2003). We find that
the optimal phase of the body motion is determined in part by the position of the
trailing edge with respect to the vortices. For bodies which are short or long relative
to the vortex spacing, well-defined optimal phases arise. For bodies of intermediate
lengths, the optimal phase smoothly interpolates these limiting phases.

The outline of the paper is as follows. In § 2 we present the model for a finite
body moving in the potential flow of the vortex street. We derive the distribution of
vorticity along the body and in the wake and the distribution of pressure forces along
the body. In § 3 we consider how passive and active flexible bodies (clamped or driven
at the leading edge) move and obtain thrust under such pressure forcing. For small
body displacements, the problem can be decomposed into three linear problems –
a driven body in a uniform flow (considered previously in Alben 2008a), a passive
elastic body (akin to a passive flag) driven by the point vortices and a beam driven
at the leading edge superposed with the flow and pressure distribution of the vortex
street. We determine the magnitudes of the main flow quantities; for the case of
short-wavelength vortex streets, this requires re-centring the co-ordinate system at the
body’s trailing edge. In § 4 we consider the optimal swimming motion of a body with
fully prescribed shape, in terms of the maximum thrust force and efficiency. Section 5
discusses the results in the context of previous studies.

2. Flexible body and trailing wake in a vortex street
We consider a flexible body of length 2L in a periodic von Kármán vortex street.

The street consists of two alternating rows of vortices (see figure 1). The top row has
identical point vortices, each with circulation Γ , at the points {ml + id/2, m ∈ �}.
The bottom row has vortices with circulation −Γ located at the points {(m + 1/2)l −
id/2, m ∈ �}. The spacing between neighbouring vortices in a row is then l, and
the width of the vortex street is d . For the von Kármán street, Γ < 0, while for
the inverse von Kármán street, Γ > 0 (positive Γ corresponds to counterclockwise
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Figure 1. The parameters for a body of length 2L (solid line) swimming with amplitude
h(x, t) in a vortex street (bold stars) with width d and horizontal spacing between vortices l.
The horizontal position of the body is assumed to be fixed (similar to that in Barrett et al.
1999), but the vertical deflection varies in time either passively (due to fluid forces) or actively
(a prescribed vertical motion at the leading edge or all along the body, which yields a force on
the body in the −ex-direction). At subsequent times the vortex street moves rightward (light
stars) due to the superposition of the velocity induced by the street on itself together with a
background flow velocity U ex .

rotation). We assume that the point vortices are superposed on a background flow
with uniform speed U . Such is the case when vortices are shed from a stationary
obstacle in a uniform stream or from an upstream body swimming at constant speed
through quiescent fluid. In the latter case the background flow velocity is the negative
of the upstream body velocity, when we view the vortex street in a reference frame
translating with the upstream swimming body. In the unbounded plane, the vortex
street translates with uniform velocity Ucex (Saffman 1992):

Uc = U + (Γ/2l) tanh(πd/l). (2.1)

We now introduce a body in the form of a flexible sheet along the midline between
the two alternating rows of vortices. The sheet executes small-amplitude displacements
h(x, t) transverse to the midline and thus has complex position x+ih(x, t). We assume
|h| � d, l, L for the sake of analytical tractability, as explained below. We consider
first the undeflected base state in which the solid sheet lies exactly along the x-axis.
The condition that fluid does not penetrate the body can be satisfied by posing a
vortex sheet, or equivalently a jump in tangential velocity, across the body. We also
introduce a vortex-sheet wake emanating from the trailing edge of the body. The
strength of the vortex-sheet wake at the trailing edge is chosen at each instant to
satisfy the condition of finite flow velocity at the trailing edge – the ‘Kutta’ condition
(Thwaites 1987; Bisplinghoff & Ashley 2002; Jones 2003). As a consequence, the
vortex-sheet strength is continuous where the vortex wake meets the body at its
trailing edge.

We now determine the unsteady strength distribution of the vortex sheet on the body
and in the wake. We may use the results to compute the pressure forces on the body
from the Euler equations and the deflection of a passive flexible body using the
Euler–Bernoulli equation of beam bending.
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When one vortex in the translating upper row of vortices crosses the y-axis (shown
by the bold stars in figure 1), the flow has the following complex velocity potential
(Saffman 1992):

w = Uz − iΓ

2π
log

(
sin

(
π

l

(
z − id

2

)))
+

iΓ

2π
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. (2.2)

The complex-conjugate velocity is

u − iv =
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Evaluating (2.3) at z = x and simplifying, we find that the point vortices induce the
following velocity on the x-axis:

u − iv
∣∣∣
y=0

= U − i
Γ

l

cosh(πd/l)

sin(2πx/l) − i sinh(πd/l)
. (2.4)

So far we have assumed the particular instant in time at which one of the upper
row of vortices crosses the y-axis. If we assume this occurs at time t = 0, then at
subsequent times the complex velocity is given by (2.4) but with x changed to x −Uct .
This distribution of velocity is then a travelling wave moving with speed Uc. Separated
into real and imaginary parts, the time-dependent form of (2.4) is

u

∣∣∣
y=0

= U +
Γ

l

sinh(πd/l) cosh(πd/l)

sin2(2π(x − Uct)/l) + sinh2(πd/l)
, (2.5)

v

∣∣∣
y=0

=
Γ

l

sin(2π(x − Uct)/l) cosh(πd/l)

sin2(2π(x − Uct)/l) + sinh2(πd/l)
. (2.6)

We now consider the case in which d/l � 1/π, which includes physically reasonable
vortex streets of moderate-to-large aspect ratio. Then (2.5) and (2.6) simplify to

u

∣∣∣
y=0

= um(1 + O(e−2πd/l)), um = U +
Γ

l
; (2.7)

v

∣∣∣
y=0

= vm(1 + O(e−2πd/l)), vm(x, t) =
2Γ

l
e−πd/l sin(2π(x − Uct)/l). (2.8)

We express vm as the real part of a complex exponential:

vm(x, t) = Re(Vm(x)eiωt ); Vm(x) =
2iΓ

l
e−πd/le−2πix/l; ω = 2πUc/l. (2.9)

The no-penetration condition on the body takes the form

vm(x, t) +
1

2π

∫ L

−L

γ (x ′, t)dx ′

x − x ′ +
1

2π

∫ ∞

L

γ (x ′, t)dx ′

x − ζ (x ′, t)
= 0, −L < x < L. (2.10)

Here ζ (x ′, t) is the complex position of the free vortex sheet, and we have neglected
terms which are O(h, ∂xh). This equation states that on the body, the vertical flow
velocity due to the point-vortex street and the body and wake vortex sheets equals
the vertical velocity of the body, which is zero in the base state where the body is a
flat plate.

The vortex-sheet wake ζ (x, t) is a contour in the complex plane which emanates
continually from the trailing edge and is advected passively by the local fluid flow at
ζ . We define the circulation in the vortex-sheet wake as an integral of the vortex-sheet
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strength:

Γ (x, t) =

∫ x

∞
γ (x ′, t)dx ′, L < x < ∞. (2.11)

At each material point of the vortex-sheet wake, the circulation Γ is conserved in
time (Saffman 1992) and is equal to the value of circulation it had at the initiation of
the material point at the trailing edge of the body at a time t∗ (Krasny 1991; Jones
2003). Thus

Γ (x, t) = Γ (L, t∗(x)), L < x < ∞. (2.12)

The initiation time t∗ has a unique value for each position x on the vortex-sheet wake.
We now argue that the assumption d/l � 1/π also simplifies the vortex wake

dynamics and thus simplifies the last integral in (2.10). First, we note that vm is
O(e−πd/l). By its continuity at the trailing edge, γ is of the same order in d/l on
the body and in the vortex-sheet wake. By (2.10), on both contours γ is of the
same order as vm, O(e−πd/l). The local fluid flow at points on the vortex-sheet wake
is a superposition of four flows: the horizontal background flow U and the flows
induced by the vortex sheet along the body, the vortex sheet along the wake and
the point-vortex street. We assume that body is inserted into the vortex street at an
initial time (t0, say), and then the vortex-sheet wake emanates steadily under the flow
at the trailing edge. The horizontal flow is um, and the vertical velocity there from
the vortex street (vm) and from the body’s vortex sheet is O(e−πd/l). Thus to leading
order the vortex sheet emanates horizontally from the body. At all subsequent times
the horizontal velocity on the sheet is um +O(e−πd/l), and the vertical velocity remains
O(e−πd/l). Thus for long times, at leading order in powers of e−πd/l with πd/l � 1, we
may approximate the vortex-sheet wake as a semi-infinite horizontal line extending
from x = L to x = ∞. It may be shown that the velocity induced at the point vortices
in the vortex street is also O(e−πd/l); so we may reasonably assume (as observed in
the experiment of Liao et al. 2003) that insertion of the body into the vortex street
does not modify it at leading order.

The distribution of vorticity γ in the vortex-sheet wake is also simplified because
the problem is time-periodic at leading order. The velocity of the point-vortex street
equals Uc + O(e−πd/l) and is thus steady and horizontal at leading order. By (2.9)
and (2.10) (with ζ (x ′, t) = x ′ now), the problem is periodic with a single frequency
ω = 2πUc/l. Thus the total circulation in the wake is a periodic function:

Γ (L, t) = Γ0e
iωt . (2.13)

Because the wake moves horizontally at constant speed, the distribution of circulation
(and vorticity) in the vortex-sheet wake is spatially periodic:

Γ (x, t) = Γ (L, t∗(x)) = Γ

(
L, t − x − L

um

)
= Γ0e

iωte−iω(x−L)/um, L < x < ∞. (2.14)

It is most convenient mathematically to non-dimensionalize all lengths by L (the
body half-width) and time by l/Uc (the temporal period of the vortex-street motion).
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Then (2.14) yields

Γ (x, t) = Γ0e
i2πte−iΩ(x−1), 1 < x < ∞, (2.15)

γ (x, t) = ∂xΓ (x, t) = G(x)ei2πt , 1 < x < ∞, (2.16)

G(x) = −iΩΓ0e
−iΩ(x−1), 1 < x < ∞, (2.17)

Ω =
ωL

um

=
2πUc

um

L

l
=

2πL

l

1 +
1

2
(Γ/lU )

1 + (Γ/lU )
, (2.18)

where the dependent and independent variables (including Γ0) in (2.15)–(2.17) are
now dimensionless. Equation (2.10) then becomes

1

2π

∫ 1

−1

G(x ′)dx ′

x − x ′ = F (x), −1 < x < 1, (2.19)

F (x) = −Vm(x) − Γ0E(x), (2.20)

E(x) = − iΩ

2π

∫ ∞

1

e−iΩ(x′−1)dx ′

x − x ′ , (2.21)

Vm(x) = 2i
Γ/lU

1 + 1
2
Γ/lU

l

L
e−2πixL/le−πd/l (2.22)

where all variables are again dimensionless. There are two unknowns to be found: Γ0

and G(x). Similar to Jones (2003), we explicitly remove the logarithmic singularity in
F (x) at x = 1:

F (x) = f (x) +
iΩΓ0

2π
log(1 − x), (2.23)

where f is a bounded continuous function. We can solve (2.19) for G in terms of a
Chebyshev expansion of f :

f (x) =

∞∑
k=0

fk cos kθ ; θ = arccos x. (2.24)

The solution to (2.19) is then

V (θ) =2

∞∑
k=1

fk sin kθ sin θ − f1 − 2f0 cos θ (2.25)

+
iΩΓ0

π
(1 − (π − θ) sin θ + log(2) cos θ) + C; G(θ) = V (θ)/ sin θ. (2.26)

Here we have evaluated the Hilbert transform of log(1 − x) in closed form using
Mathematica 6. The constant C is set by the conservation of circulation (Kelvin’s
Theorem), ∫ 1

−1

γ (x, t)dx − Γ (1, t) = 0, (2.27)

which implies that C = Γ0/π, using (2.26). Solution (2.26) for the bound vorticity G

is continuous with the vorticity in the vortex-sheet wake at x = 1; both equal the real
part of −iΩΓ0e

i2πt . We can solve for the total circulation in the wake Γ0 explicitly
using the Kutta condition that velocity (and therefore γ and G) are finite at the
body’s trailing edge. By (2.26) for G, V must be zero at θ = 0. Then by (2.25) for V ,

Γ0

π
(1 + iΩ(1 + log(2))) = f1 + 2f0. (2.28)
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Figure 2. Contours of constant log10 |Γ0|eπd/l in the space of the point vortices’ strength
|Γ |/lU and their horizontal spacing l/L. The normalizing factor eπd/l is included to remove
dependence on d/l.

Using (2.23) and (2.20),

Γ0 =
−2

∫ 1

−1
Vm(x)

√
1 + x

1 − x
dx

1 + iΩ(1 + log(2)) + 2
∫ 1

−1

[
E(x) + iΩ

2π
log(1 − x)

] √
1 + x

1 − x
dx

. (2.29)

The integrands in (2.29) are bounded when the variable of integration is changed
from x to θ . In figure 2 we plot contours of the strength of the shed sheet, |Γ0|, with
respect to the strength of the vortices, |Γ |/lU , and their horizontal spacing relative
to the plate length l/L. There are four asymptotic regimes which can be deduced
from (2.29). The integrals in the numerator and denominator both involve weighted
integrals of e−2πiLx/l . When l/L � 1, both integrals are O(1) in l/L. Then |Γ0| ∼
l/L, from the l/L prefactor in Vm. When l/L � 1, both integrals are O((l/L)−1/2)
(shown in § 3.4, (3.35)). Then |Γ0| ∼ (l/L)2, from the l/L prefactor in Vm and the
terms proportional to Ω ∼ L/l in the denominator. Then |Γ0| has the following
scalings:

|Γ0| ∼ e−πd/l |Γ |/lU

1 + 1
2
Γ/lU

(
l

L

)2

,
l

L
� 1; |Γ0| ∼ e−πd/l |Γ |/lU

1 +
1

2
Γ/lU

l

L
,

l

L
� 1. (2.30)

These asymptotic scalings are verified in figure 2, a contour plot of |Γ0| computed
numerically. We have assumed that Γ/lU , if negative, is less than 2, so that advection
of the vortex street is not dominated by the self-induction of the vortices relative to
the background flow – which is physically reasonable for most wake flows (Batchelor
1967).

Physically, |Γ0| grows with |Γ |/lU because the strength of vorticity on the body
and in the wake must be strong enough to offset the flow due to the point vortices,
from the no-penetration condition. When |Γ |/lU is large, |Γ0| saturates because it is
non-dimensionalized using the speed Uc of the point vortex street, which grows with
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|Γ |/lU when |Γ |/lU is large; |Γ0| has the same linear dependence on l/L as does the
normal flow Vm when l/L is large. When l/L is small, rapid oscillations in the normal
flow cancel to some extent in the vorticity induced by the normal flow, and thus |Γ0|
tends to zero as (l/L)2, more rapidly than Vm.

Having solved for Γ0 (2.29), we now have the vortex-sheet strength in the wake.
Using (2.26) we also have the solution for G(x), the vortex-sheet strength on the body.
From (2.26), the magnitude of G is the sum of the terms with the same magnitude as
Vm and the terms proportional to Γ0. Thus the magnitude of G is the same as Vm for
l/L large and small (in which case the Γ0 terms become subdominant):

|G| ∼ e−πd/l |Γ |/lU

1 +
1

2
Γ/lU

l

L
. (2.31)

We may derive the difference in pressure across the body in terms of γ , which is
the same as the difference in fluid pressure across a generic vortex sheet, derived by
Saffman (1992) using the Euler equations expressed on either side of the body. The
result is

1

ρf

∂s[p] = ∂tγ + ∂s((μ − τ )γ ), (2.32)

where ρf is the fluid density per unit area; s is arclength along the body; μ is the
tangential component of the average of the fluid velocities on either side of the body;
and τ is the component of the body velocity along its tangent. For a static, horizontal
body lying in −1 < x < 1,

1

ρf

∂x[p] = ∂tγ +

(
U +

Γ

l

)
∂xγ, (2.33)

where we have set μ equal to the constant um in (2.7). We non-dimensionalize [p] by
ρf U 2

c (L/l)2, and then in dimensionless form (2.33) is

∂x[p] = ∂tγ +
1 + Γ/lU

1 +
1

2
Γ/lU

l

L
∂xγ. (2.34)

Separating out the harmonic time dependence of [p],

[p](x, t) = P (x)ei2πt , (2.35)

(2.33) becomes

∂xP = i2πG +
1 + Γ/lU

1 +
1

2
Γ/lU

l

L
∂xG. (2.36)

We integrate (2.36) with the boundary condition that the pressure jump vanishes at
the trailing edge,

P

∣∣∣
x=1

= 0, (2.37)

to obtain

P (x) = i2π

∫ x

1

G(x ′) dx ′ +
1 + Γ/lU

1 + 1
2
Γ/lU

l

L
(G(x) + iΩΓ0), (2.38)

where we have used G(1) = −iΩΓ0. For l/L � 1, both terms on the right-hand side
of (2.38) are O((l/L)2). For l/L � 1, the second term dominates the first by O((l/L)2)
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Figure 3. (a) The bound vorticity G and (b) the pressure P for two different values of l/L:
0.1 and 1. The wavelength of the shapes is proportional to l/L. The solid lines give the
cos(2πt + φT E) component, and the dashed lines give the − sin(2πt + φT E) component, where
the phase shift φT E (3.33) is applied to give convergence at both small and large l/L; P is
multiplied by eπd/l/(l/L)2 and G is multiplied by eπd/l/(l/L), so the amplitudes do not change
as d/l and l/L are varied. The value of Γ/lU is 0.1. Different values of Γ/lU mainly modify
the amplitudes but not the shapes of G and P .

versus O((l/L)). Thus for l/L small and large,

|P | ∼ e−πd/l |Γ |/lU

1 + 1
2
Γ/lU

(
l

L

)2

. (2.39)

Having determined the magnitudes of Γ0, G and P with respect to the dimensionless
parameters, we now discuss the functional forms of G and P .

In figure 3 we plot G and P for small-to-moderate values of l/L. As stated
previously, we are considering the regime in which πd/l is greater than one. Here
we set Γ/lU = 0.1, corresponding to a somewhat weak reverse von Kármán vortex
street, and address changes due to varying Γ/lU subsequently. Furthermore, we add
a phase shift φT E to the functions so that the solid line in figure 3 corresponds to
alignment of a vortex from the upper street with the trailing edge of the body (instead
of its midpoint as for the bold stars in figure 1), and the dashed line is shifted by 90◦

from that phase. We have thus plotted the real and imaginary parts of P eiφT E

, which
converges in the limits of small l/L and large l/L, as explained further in § 3.4, (3.33)
and (3.37).

For small l/L (figure 3a), G is essentially sinusoidal, apart from regions near
the end points which shrink as l/L decreases. The reason that G is sinusoidal for
small l/L may be seen in (2.19) and (2.20) with Vm given in (2.22). We have already
noted in (2.30) that Γ0 tends to zero like (l/L)2 when l/L is small. Thus it becomes
subdominant to Vm on the right-hand side of (2.19); so the flow induced by the
vortex-sheet wake is subdominant to the flow induced by the point vortices, away
from the ends by more than O(l/L). We now recall that Vm is proportional to e−2πiLx/l .
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Using the definition of the exponential integral with an imaginary argument Ei(ix)
and its asymptotic behaviour for large x,

∫ 1

−1

eikx′
dx ′

x − x ′ = eikx [iπ sign(k) + Ei(−ik(1 + x)) − Ei(ik(1 − x))] , −1 < x < 1, (2.40)

∫ 1

−1

eikx′
dx ′

x − x ′ ∼ eikx [−iπ sign(k)] + O

(
1

k

)
, k � 1, 1 ± x � 1

k
. (2.41)

Equation (2.41) shows that the integral on [−1, 1] behaves the same way as does the
Hilbert transform on [−∞, ∞] for large k, away from small end regions. Since Vm is
a complex exponential with k = −2πL/l, (2.41) shows that G has the same form for
large k (small l/L):

G = 4
Γ/lU

1 +
1

2
Γ/lU

l

L
e−2πiLx/le−πd/l + O

(
l

L

)2

, 1 ± x � L

l
. (2.42)

This form agrees well with figure 3(a). The asymptotic relation (2.41) may also be
used to explain the good agreement between the stability diagram of a finite and an
infinite flapping flag for small bending rigidity, when large-wavenumber shapes occur
(Shelley, Vandenberghe & Zhang 2005; Alben 2008b). Furthermore, (2.41) may be
used to relate vortex-sheet problems with a finite boundary to those with periodic or
infinite boundary conditions (Hou, Lowengrub & Shelley 2001; Ambrose & Wilkening
2008; Alben 2009), where the Hilbert transform is simpler in Fourier space. Physically,
when the wavelength of the flow on the body is much shorter than the body length,
the end conditions (finite or infinite) become less important. A similar asymptotic
behaviour was found in studies of a flexible body driven periodically in a fluid stream
(Alben 2008a) and the second-order bending of a flexible fibre in a steady flow
(Alben, Shelley & Zhang 2004).

We now consider the pressure at small l/L (figure 3b). The pressure is a linear
combination of G and an integral of G (2.38). It is a sinusoidal shape superposed
on a longer-wavelength background shape which diverges at the leading edge. The
background shape tends to zero as l/L tends to zero, leaving a sinusoidal pressure
over the whole body, except in small regions near the leading and trailing edges.

In figure 4 we show G and P at large l/L. They converge to shapes which depend
on the function E(x) in equation (2.21), and which are independent of l/L in this
limit. The solid line in figure 4(a) is nearly zero away from the leading edge. This
is the bound vorticity induced when the body trailing edge is aligned with a point
vortex from the upper street. The near symmetry of the vortex configuration in this
situation means that the normal flow is very small on the body. At the leading edge
G diverges like an inverse square root, though with a small prefactor at this phase.
The dashed line is nearly linear over the middle region of the body. This is the
bound vorticity induced when the body trailing edge lies midway between the nearest
vortices from the upper and the lower street. Then the contribution to the normal
flow from the nearest vortices in each street adds constructively, yielding a maximum
of bound vorticity. Because l/L is large, the normal flow is nearly uniform over the
(small) body and is cancelled by a linear distribution of bound vorticity. Hence the
dashed line in figure 4(a) is approximately linear on the central portion of the body.
There is a deviation to a square-root behaviour at the trailing edge and an inverse
square-root divergence at the leading edge. Because the flow from the point vortices
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Figure 4. (a) The bound vorticity G and (b) the pressure P for five different values of l/L:
10 to 105 in integral powers of 10. Lines for the three largest values of l/L = 103, 104, and 105

show convergence to a single line which is slightly thicker than the others. The other plotting
details are the same as for figure 3.

is larger in the imaginary phase than in the real phase, the prefactor of the divergence
is also much larger in this case.

In figure 4(b), the pressure is nearly identical to the bound vorticity (figure 4a)
times a factor of l/L. This is because the second term in (2.38) dominates the first
(the integral term) for large l/L.

3. Body driven (or clamped) at the leading edge
We now consider an elastic body placed in the flow. The body is assumed to be

clamped (held with zero vertical displacement and tangent angle) or driven at the
leading edge and free at the trailing edge. Such a body yields a model for the tail
fin of a fish swimming in a vortex street, which occurs when the fin lies in the wake
of an obstacle (Liao et al. 2003), of another fin on the same fish (i.e. the dorsal fin;
Drucker & Lauder 2001, 2005) or of another fish while swimming in a school (Weihs
1973). Because the flow induced by the vortex street is sinusoidal for wide vortex
streets, this model may also be used to study the effect of generic fluid disturbances
on the fin through Fourier decomposition.

The fin shape is ζ (x, t) = x + ih(x, t). We assume small deflections, so |h|, |∂xh| � 1.
We also assume spatially uniform rigidity, for simplicity (but see Alben, Madden &
Lauder 2007). The fin moves according to the linear beam equation and is forced by
the pressure of the undisturbed vortex street:

R1∂tth(x, t) = −R2∂xxxxh(x, t) − [p]. (3.1)

Here R1 and R2 are the dimensionless mass per unit length and bending rigidity of
the fin:

R1 =
ρs

ρf L
; R2 =

B

ρf U 2
c L3

l2

L2
. (3.2)
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Assuming a solution with the same temporal period as the vortex street,

h(x, t) = H (x)ei2πt , (3.3)

and (3.1) becomes a linear inhomogeneous ordinary differential equation (ODE):

−(2π)2R1H + R2∂xxxxH = −P. (3.4)

We now assume the fin is driven at its leading edge with a combination of heaving
and pitching (Lighthill 1969):

H (−1) = H0e
iφH ; H ′(−1) = Θ0e

iφθ H ′′(1) = H ′′′(1) = 0. (3.5)

The heave and pitch amplitudes H0 and Θ0 are non-negative numbers. The heave and
pitch phases φH and φθ give the time, in units of 2π times the period, by which the
heaving or pitching maximum precedes the passage of a point vortex from the upper
street over the midpoint of the body.

3.1. Feedback from body motion on to pressure

In § 2 we derived the pressure jump P on a body which undergoes zero deflection.
Now we consider how the solution to the flow–body problem, including P in (3.4),
changes when the body is in motion. We assume the body deflection is no longer
zero but is small (|H |, |∂xH | � 1). Feedback from the body motion to the flow is
obtained by allowing the body motion to alter the vorticity induced on the body and
in the wake and therefore also the pressure on the body. In this case, still linearized
for small amplitudes, (2.10) and (2.19) are modified to read

(∂t + U∂x)h(x, t) = vm(x, t) +
1

2π

∫ L

−L

γ (x ′, t)dx ′

x − x ′

+
1

2π

∫ ∞

L

γ (x ′, t)dx ′

x − ζ (x ′, t)
, −L < x < L, (3.6)

1

2π

∫ 1

−1

G(x ′)dx ′

x − x ′ = 2πiH (x) +
U

Uc

l

L
H ′(x) − Vm(x) − Γ0E(x), −1 < x < 1. (3.7)

The terms in (3.6) and (3.7) involving h and H are new, but we have neglected
terms which are O(γ h, γ ∂xh). We may decompose solutions (Gm, Γ0m, Pm, Hm) to the
modified kinematic equation (3.7) plus the beam equation (3.4) and pressure equation
(2.36) into a sum of two solutions:

(Gm, Γ0m, Pm, Hm) = (G, Γ0, P , H ) + (Gh, Γ0h, Ph, Hh). (3.8)

The terms (G, Γ0, P , H ) are the solutions to (2.19) (unmodified by body motion) plus
(3.4) and (2.38); (Gh, Γ0h, Ph, Hh) solve the part of (3.7) with body coupling to the
flow (the H terms) but without the vortex street (Vm),

1

2π

∫ 1

−1

Gh(x
′)dx ′

x − x ′ = 2πiHh(x) +
U

Uc

l

L
H ′

h(x) − Γ0hE(x), −1 < x < 1. (3.9)

The terms (Gh, Γ0h, Ph, Hh) are then the solution for a body driven or clamped at
the leading edge in a fluid stream. This problem was addressed in a previous work
(Alben 2008a). The solutions were found to be akin to those of a damped driven
oscillator, where the fluid is a source of both damping and excitation, leading to
damped resonances at certain values of R2. The only difference in Hh here is that
the constant advection speed in (2.33) is now U + Γ/l instead of U in the previous
work. The structure of the solutions is essentially the same and becomes exactly the
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same for weak vortex streets, Γ/lU � 1. Thus for small deflections, the solution is
a superposition of the damped-driven beam of Alben (2008a) with the ‘decoupled’
solution (G, Γ0, P , H ) in which the body is moved by the flow of a vortex street over
a flat plate, but the flow is unmodified by body motion. Only the decoupled solution
depends on the vortex street, and is not yet known, so we focus on it in this work.
The problem of maximizing thrust or efficiency then becomes the problem of the
setting the body shape to optimally ‘catch the breeze’ from the passing vortex street.
More precisely, this means setting the body slope relative to the pressure induced by
the vortex street to yield a force in the upstream direction.

The decoupled solution is also the leading-order solution in a particular asymptotic
limit. In the limit that R1 and R2 are large relative to the magnitude of P , the body
is too stiff or heavy to deflect much under the vortex pressure loading. The body
shape may then be expanded as a formal asymptotic series in inverse powers of R1

and R2 times a function of the flow parameters d/l, l/L and Γ/lU . Although we do
not pursue it further in this work, the form of this expansion can be found from the
solution to the decoupled problem, which we give next.

3.2. Body driven at the leading edge

The solution to (3.4) with boundary conditions (3.5) is the classical variation-of-
parameters solution for a linear ODE:

H (x) = C1e
−kx + C2e

kx + C3 sin(kx) + C4 cos(kx)

+
k−3

2R2

[
e−kx

2

∫ x

−1

ekx′
P (x ′)dx ′ − ekx

2

∫ x

−1

e−kx′
P (x ′)dx ′

− cos(kx)

∫ x

−1

sin(kx ′)P (x ′)dx ′ + sin(kx)

∫ x

−1

cos(kx ′)P (x ′)dx ′
]

, (3.10)

k = (2π)1/2(R1/R2)
1/4. (3.11)

Here k is the characteristic wavenumber for the neutral oscillations of an elastic
rod with mass in a vacuum. The constants C1, C2, C3, C4 are chosen to satisfy the
boundary conditions in (3.5) and are given in the Appendix . The solution is

H (x) = H1(x) + H2(x), (3.12)

a superposition of two solutions. The function H1(x) is the solution to the equation
with homogeneous boundary conditions. This is the part of solution (3.10) involving
P , with all the terms proportional to H0 and Θ0 set to zero, and is the motion of
a passive body clamped at the leading edge and driven by the vortex street. The
function H2(x) is the solution to the homogeneous equation

−(2π)2R1H2 + R2∂xxxxH2 = 0, (3.13)

with the driving boundary conditions (3.5); H2 is the part of (3.10) involving H0 and
Θ0, with the terms involving P set to zero.

We can quantify when the criteria (|H | � 1, |∂xH | � 1) are met in terms of solution
(3.10). For the part of the solution which depends on H0 and Θ0, we require that

H0,
Θ0

k
� 1 (3.14)

for small deflections and

kH0, Θ0 � 1 (3.15)
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for small slopes. For the part of the solution which depends on P , solution (3.10)
shows that body deflection magnitudes are proportional to R−1

1 times an integral of
the pressure (with magnitude given in (2.39)). Hence the magnitude of H is

|H | ∼ 1

R1

e−πd/l |Γ |/lU

1 + 1
2
Γ/lU

(
l

L

)2

. (3.16)

Differentiating solution (3.10) introduces a factor of k; so body slope magnitudes are
given by the right-hand side of (3.16) but with R−1

1 changed to R
−3/4
1 R

−1/4
2 . Thus for

the linear theory we require

R1, R
3/4
1 R

1/4
2 � e−πd/l |Γ |/lU

1 + 1
2
Γ/lU

(
l

L

)2

. (3.17)

Criteria (3.17) require the flow induced by the vortex street to be sufficiently weak
relative to the body mass and rigidity. The second term on the left side of (3.17) is
proportional to R1/k. Thus, shapes of large wavenumbers are permitted provided R1

is sufficiently large.
There is another criterion, in addition to (3.14), (3.15) and (3.17), which is necessary

for the body to undergo small deflections. The resonant frequency of the body must
not coincide with the frequency of the vortex street. This occurs when

k = 0.9376, 2.3470, 3.9273, 5.4978, . . . , (3.18)

where subsequent terms in the k sequence are very nearly π/2 apart (see Alben 2008b).
These are a sequence of lines with slope 1 in the R1–R2 plane.

We shall now consider the motion of the clamped body as a model for a flapping
flag in a vortex street. When a flag becomes unstable to flapping, small-amplitude
motions grow until saturation, when nonlinear effects become important. Even
for large-amplitude flapping, the small-amplitude, small-slope equations can be a
reasonable approximation to the large-amplitude flag dynamics, particularly for the
low-wavenumber flapping modes (Alben 2008b; Eloy et al. 2008). The model may
also be applied to vortex-driven motions of stable passive bodies. The flapping-flag
instability does not occur in a large region of the R1–R2 space, which is given
approximately by the criteria that R2 must be larger than 1 when R1 is larger than
10 and R2 must be larger than 0.1R1 when R1 is less than 10 (Alben 2008b). Here R1

is the same as in (3.2), and R2 is the expression in (3.2) but with Uc changed to U

and the factor l2/L2 removed.
Having described when we may expect the small-deflection theory to be valid, we

now consider the motion and forces experienced by a body clamped or driven at the
leading edge. In § 3.3 we consider the clamped body, given by H1 in (3.12). Such a
body yields a model for a flapping flag placed in a vortex street, which occurs when
the flag lies in the wake of another object – such as a rigid obstacle (i.e. the flag pole),
or another flapping flag (Ristroph & Zhang 2008), in which case Γ < 0, or a body
swimming upstream, in which case Γ > 0. In § 3.4 we consider the body driven at the
leading edge as a model for a flexible tail fin in a vortex street. The fin is modelled by
H , a sum of H1 and H2 in (3.12). We shall show that the problem of optimal driving
at the leading edge is one of matching the driving phases to the phases of weighted
integrals of the pressure jump P .

3.3. Small perturbations of a passive body clamped at the leading edge

We now consider a passive elastic body, clamped at the leading edge and placed in a
vortex street, given by H1 in (3.12); H1 may be used alone or together with Hh (in (3.8),
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Figure 5. The shape of a passive flexible body for (a) l/L = 1 and (b) l/L = 100 and
for k4/(2π)2 = R1/R2 = 10−2, 100, 102. Larger values correspond to higher-wavenumber
deformations. The solid lines give the cos 2πt component, and the dashed lines give the
− sin 2πt component. Here Γ/lU is 0.1; for negative values small in magnitude, the shapes are
essentially reversed in sign.

with clamped-free boundary conditions) to model a flapping flag in a vortex street.
The superposition Hh + H1 gives the fully coupled flapping-flag dynamics (linearized
for small deflections).

Equation (3.4) is solved by H1 solves with boundary conditions:

H1(−1) = H ′
1(−1) = 0 ; H ′′

1 (1) = H ′′′
1 (1) = 0. (3.19)

In figure 5, body shapes are plotted for different values of R1/R2 and l/L. While
the body amplitudes are proportional to 1/R1 (3.16), the body shapes depend only
on the ratio R1/R2 or k, as can be seen in (3.10). The number of wavelengths on
the body increases by one half as k increases through each of the intervals between
resonant values (3.18); the body shape reflects across the x-axis as k moves through
a resonance. Solution (3.10) shows that for both large and small l/L, the body
shapes are essentially a superposition of sinusoidal waves with wavenumber k with
the pressure jump. For small l/L, the sine and cosine components of the motion are
nearly equal. As l/L becomes large, the sinusoidal component dominates due to the
larger pressure forcing at this phase (figure 4b).

The instantaneous horizontal force on the body due to the flow is given by

Fx = −π

8
v(−1, t)2 +

∫ 1

−1

[p](x, t)∂xh(x, t)dx. (3.20)

The first term on the right of (3.20) represents the suction force on the leading edge of
the body (Saffman 1992) and is the limit of the pressure force on a rounded edge as the
edge becomes sharp (i.e. the curvature of the edge becomes infinite). The second term
on the right side of (3.20) is the horizontal component of the pressure force on the
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body. The period-averaged horizontal force is

〈Fx〉 = − π

16
|V (−1)|2 +

1

2

∫ 1

−1

Re(P (x)∂xH̄ (x))dx, (3.21)

〈Fx〉 = − π

16
|V (−1)|2 +

1

2

∫ 1

−1

Re(((2π)2R1H − R2∂
4
xH )∂xH̄ )dx, (3.22)

〈Fx〉 = − π

16
|V (−1)|2 +

1

4
(2π)2R1|H |2

∣∣∣
1

− 1

4
R2|H ′′|2

∣∣∣
−1

(3.23)

where the bar in (3.21) denotes the complex conjugate. We have used integration by
parts and the clamp boundary conditions (3.19) to simplify the equations, so only
quantities at the boundaries are needed. The terms involving leading-edge suction and
leading-edge curvature are negative and therefore provide thrust on the body, while
the second term, involving trailing-edge deflection, is positive and thus contributes a
drag force.

For a model of the flapping flag, the term H in (3.23) is a superposition of Hh and
H1. For the more quantitative discussion of forces in the remainder of this section,
we now neglect the term Hh and focus instead on forces from the term H1 due to
the vortex street. Neglecting Hh is valid when the feedback from the body motion
to the flow can be neglected. The feedback can be neglected when the flag is stable
to flapping and when the body motion is small in amplitude and slope (inequalities
(3.17) are satisfied). In this case we need only consider the contribution of H1 to
(3.23). The physical situation being considered is a passive elastic body clamped at
the leading edge and is undergoing small motions due to the pressure forcing of
the vortex street. Despite the limitation of small motions, the physical situation is
otherwise similar to that of the unstable flag in a vortex street, and the forces may
agree qualitatively in the two cases.

We begin by considering the leading-edge suction in (3.23) and relate it to the flow
induced by the vortex street. Because the body motion H is induced by the fluid flow,
which is ∼G ∼ V , the suction force is of the same order as the force from body
motion. Explicitly evaluating V (−1) using (2.25) and the definitions of f (2.23) and
F (2.20), we obtain

V (−1) = 4
−Vm,0 + π(E0Vm,1 − E1Vm,0)

1 + π(E1 + 2E0)
. (3.24)

The terms with subscripts on the right-hand side of (3.24) are the first two Chebyshev
coefficients (weighted integrals) of Vm and E, defined as for f in (2.24). The leading-
edge suction is essentially a weighted average of Vm, the flow induced by the vortex
street.

We now set aside the leading-edge suction term, the first term on the right-hand
side of (3.23), and consider the part which depends on H . Multiplying 〈Fx〉 minus the
leading-edge suction by R2,

R2(〈Fx〉 − l.e.s.) =
1

4
k4|R2H |2

∣∣∣
1

− 1

4
|R2H

′′|2
∣∣∣
−1

=

[∫ 1

−1

wR(k, x ′)Re(P (x ′))dx ′
]2

+

[∫ 1

−1

wI (k, x ′)Im(P (x ′))dx ′
]2

. (3.25)

Equation (3.25) is obtained by multiplying the exact solution (3.10) by R2. The
equation consists of integrals of P against weight functions wR and wI which depend
on R1 and R2 only in the ratio k and not on the flow parameters l/L and Γ/lU .
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Figure 6. Plot of log10 R2e
2πd/l |〈Fx − l.e.s.〉|/(R2(l/L)4). Contours of horizontal force on a

passive elastic body in a vortex street versus the wavenumber of the body, k, and the horizontal
spacing of vortices, l/L. The values on each contour mark the magnitude of the force. The
dotted lines mark negative force (i.e. thrust), and the solid lines mark positive force (i.e. drag).
The panel to the right gives the magnitude of leading-edge suction (l.e.s.) versus l/L, referred
to values on the vertical axis of the contour plot. Here Γ/lU = 0.1.

The average horizontal force depends on the flow parameters as the square of P . In
figure 6 we plot R2(〈Fx〉 − l.e.s.) scaled by the magnitude of P (2.39) when l/L is
large (l.e.s. is leading-edge suction). Here we assume Γ/lU = 0.1, corresponding to
a vortex wake from another flapping body upstream. If instead Γ/lU < 0 (and also
small in magnitude), both the pressure loading and the body slope in figure 5 are
reversed in sign; so their product Fx is unchanged in sign.

We find that for the lowest mode shapes (k < 0.93, the first resonance), only thrust
can occur. Between the first two resonances, mainly drag occurs, although there is
a small region of thrust near the second resonance. Subsequent bands between the
resonances show a similar pattern of drag and thrust. The reason for thrust and drag
to alternate at a resonance is that the body shape, and thus its average slope, changes
sign at a resonance. The horizontal force is an integral of body slope weighted by
pressure.

For comparison with the pressure force on the interior of the body, on the right
side of figure 6 we plot the leading-edge suction as a function of l/L. To compare
these values with those in the contour plot, we must multiply the leading-edge suction
by R2. We find that for R2 = 1, and k < 2, the leading-edge suction is dominant over
the remainder of the drag at small l/L but can become subdominant at larger l/L.
Increasing/decreasing R2 makes the suction term more/less dominant. In summary,
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both thrust and drag can occur, depending on the wavenumber of the flag and the
importance of leading-edge suction.

3.4. Body driven at the leading edge

We now return to the problem in which the body is driven at its leading edge
with a combination of heaving and pitching. In a uniform stream, the problem was
addressed in Alben (2008a). The body motion is given by H2, which satisfies (3.13)
with boundary conditions (3.5):

H2(x) = H0e
iφH H2H0(x) + Θ0e

iφθ H2T h0(x), (3.26)

H2H0(x) =
ek(x−1)(e2k − sin(2k) + cos(2k))

4(1 + cosh(2k) cos(2k))
+

ek(1−x)(e−2k + sin(2k) + cos(2k))

4(1 + cosh(2k) cos(2k))

+
sin(kx)

2 coth(k) cos(k) − 2 sin(k)
+

cos(kx)

2 tanh(k) sin(k) + 2 cos(k)
, (3.27)

H2T h0(x) =
ek(x−1)(e2k + sin(2k) + cos(2k))

4k(1 + cosh(2k) cos(2k))
+

ek(1−x)(−e−2k + sin(2k) − cos(2k))

4k(1 + cosh(2k) cos(2k))

+
sin(kx)

−2k tanh(k) sin(k) + 2k cos(k)
+

cos(kx)

2k coth(k) cos(k) + 2k sin(k)
.

(3.28)

The basis functions H2H0 and H2T h0 are plotted in figure 7 for values of k midway
between the first five resonances in (3.18). After the first resonance, the number of
wavelengths on the functions gradually increases by one half as k increases from one
resonance to the next.

The time-averaged horizontal force (3.21) in the upstream (−x) direction is

−〈Fx〉 =
π

16
|V (−1)|2 + Re

(
−1

2

∫ 1

−1

P̄ (x)∂xH1(x)dx

)
(3.29)

+ Re

(
H0e

iφH
−1

2

∫ 1

−1

P̄ (x)∂xH2H0(x)dx

)
(3.30)

+ Re

(
Θ0e

iφθ
−1

2

∫ 1

−1

P̄ (x)∂xH2T h0(x)dx

)
. (3.31)

The first two terms – leading-edge suction and the force on a passive body – have
already been considered. The two terms in the integrals on lines (3.30) and (3.31) are
the forces from leading-edge motion and are proportional to the amplitudes. They
are integrals of P̄ weighted by the slopes of the basis functions H2H0 and H2T h0. Each
such integral yields a complex number. The phases φH and φθ which maximize forces
are opposite to the phases of these weighted integrals of P̄ .

In figure 8 we plot the optimal phases for heaving and pitching versus the two
control parameters for the model: k (body flexibility) and l/L (vortex spacing). Figure
8(a) is a contour plot of the optimal phase for φH , with contour lines spaced 60◦

apart. For k below the first resonance (at 0.93), the optimal phase converges at large
l/L and oscillates rapidly at smaller l/L, shown by the many contour lines for small
l/L. Figure 8(d ) gives a contour plot of the optimal values of φθ , which also converge
at large l/L and oscillate rapidly at smaller l/L.
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Figure 7. The body basis functions in (3.27) and (3.28), for values of k which are π/4 below
each of the resonant values in (3.18).

The oscillation at small l/L is much reduced when we re-centre the phase. Thus far
we have used the basic co-ordinate system in figure 1, where zero phase corresponds
to the moment at which an upper point vortex traverses the midpoint of the body
(shown by the bold stars in figure 1). We now determine the phase φT E when an
upper point vortex traverses the ‘trailing edge’ in the basic co-ordinate system. We
then consider the phases φT E

H and φT E
θ which are the phases of the leading-edge

driving shifted by this phase φT E . The phases are given by

φT E
H = φH + φT E, φT E

θ = φθ + φT E, (3.32)

φT E = 2π

(
L

l
−

⌊
L

l

⌋)
(3.33)

where L/l� denotes the largest integer less than L/l. The contour plot of the optimal
φT E

H for thrust is plotted in figure 8(b) and that for φT E
θ is plotted in figure 8(e). These

phases converge to the same values as figures 8(a) and 8(d ) at large l/L because in
this limit the body is small relative to the spacing between the vortices; so the flow
and pressure on the body changes little when it is re-centred on the trailing edge
of the body instead of its midpoint in the basic co-ordinate system (figure 1). At
small l/L, however, the optimal φT E

H and φT E
θ show convergence instead of the rapid

oscillations of φH and φθ in figures 8(a) and 8(d ). We now consider the reason for
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Figure 8. Contour plots of the optimal thrust-generating phases for (a–c) the driving
amplitude H0 and (d–f ) the pitching angle Θ0. The phase with respect to vortices in the
basic co-ordinate system (figure 1) is shown in (a) and (d ), and the phase with zero temporal
phase reset to the instant when an upper point vortex passes the body’s trailing edge is shown
in (b) and (e). Each contour line corresponds to a multiple of π/3 radians. The variation of
phase along vertical lines equally spaced in log10 k in (b) and (e) is shown in (e) and (f ). The
dotted lines in (c) and (f ) correspond to the dotted regions in (b) and (e), and the solid lines
in (c) and (f ) correspond to the remaining regions in (b) and (e).

this convergence, which may be extended to explain the asymptotic scaling of Γ0 for
small l/L mentioned above (2.30).

For small l/L, there are many vortices relative to the length of the body. We can
understand why the phase of the flow relative to the trailing edge converges in this
limit by considering the flow in a new co-ordinate system centred on the trailing edge
and with lengths scaled by l/L:

x̃ = (1 − x)L/l. (3.34)

Decreasing l/L in the x-frame corresponds in the x̃-frame to increasing the body
length from the trailing edge towards the upstream direction. Because of the Kutta
condition at the trailing edge of the body, the mathematical structure of the problem
is determined by the flow at the trailing edge. We now show that the flow about the
body converges in the x̃-frame in the limit that l/L goes to zero. We first consider
the value of the circulation shed by the body, Γ0 given by (2.29). We consider only
the numerator, though a similar argument applies to the integral in the denominator.
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The numerator is

−2

∫ 1

−1

Vm(x)

√
1 + x

1 − x
dx = −4i

l2

L2

e−πd/lΓ / lU

1 + 1
2
Γ/lU

∫ 2/l

0

e2πi(x̃−L/l)

√
2L

lx̃
− 1 dx̃ (3.35)

= −4i
l2

L2

e−πd/lΓ / lU

1 + 1
2
Γ/lU

e−iφT E

∫ 2/l

0

e2πix̃

√
2L

lx̃
dx̃ + O

(
l2

L2

)
. (3.36)

= −2
√

2i

(
l

L

)3/2
e−πd/lΓ / lU

1 + 1
2
Γ/lU

e−iφT E

(1 + i) + O

(
l2

L2

)
. (3.37)

When multiplied by eiφT E

, the last term converges to a complex constant as l/L → 0.
The asymptotic error term in (3.37) comes from the asymptotic behaviour of the
Fresnel integrals for large arguments. This argument and a similar argument applied
to the denominator of Γ0 (2.29) shows that for small l/L, the magnitude of Γ0 grows
as (l/L)2 and the phase of Γ0e

iφT E

converges.
Inserting x̃ for x in (2.42), the bound vorticity G also converges to leading order

in l/L, when the phase is relative to φT E (i.e. when G is multiplied by eiφT E

). Since
G and Γ0 converge to the leading order in l/L, the pressure jump P in (2.38) also
converges because the pressure jump boundary condition is applied at the trailing
edge. Physically, the flow solution converges in the x̃-frame because as the body
grows away from the trailing edge, the changes are confined to a region far from the
trailing edge. Hence we obtain a convergence of the optimal driving phases φH and
φθ relative to the phase of trailing edge.

We now consider the values of the optimal phases in figures 8(b) and 8(e). We shall
next plot the corresponding swimming motions and use the pressure distributions
induced on the body (figures 3 and 4) to understand why these motions are optimal.
There are essentially two different behaviours for the optimal phases, shown by the
two sets of lines in figures 8(c) and 8(f ). In both panels, the solid lines converge to
−90◦ at large l/L and to −135◦ at small l/L (with some oscillation about this value).
The dotted lines converge to 90◦ at large l/L and oscillate around an average of 45◦

at smaller l/L. These lines give the values of the phases shown in the contour plots of
figures 8(b) and 8(e). Each line gives the values of the phases versus l/L for discrete
values of log10 k distributed equally over the range shown in figures 8(b) and 8(e).
The dotted lines in figures 8(c) and 8(f ) give the phase values in the dotted regions of
figures 8(b) and 8(e), and the solid lines in figures 8(c) and 8(f ) give the phase values
in the remainder of figures 8(b) and 8(e). The phases shown by the dotted lines are
essentially opposite to the phases shown by the solid lines. It may seen in figures 8(b)
and 8(e) that for 10−0.5 < k < 1, the optimal phase for both heaving and pitching is
the same and follows the dotted-line phase. As k increases beyond the first resonance
near 1, the optimal phases for heaving and pitching change by 180◦, to those given
by the solid lines. Shortly thereafter, the optimal phase for pitching switches back to
that given by the dotted lines (figure 8e), while that for heaving continues to show the
solid-line behaviour (figure 8b). We note that the size of the oscillations in the lines
of figures 8(c) and 8(f ) at small l/L grows as the lines approach the resonances in
figures 8(b) and 8(e), which are marked by solid vertical lines. We can gain a physical
understanding of the optimal phases shown in figure 8 by plotting the corresponding
body trajectories. We focus on the asymptotic limits of large l/L and small l/L and
small wavenumber k. Small k represents well the shapes of actual fish fins (i.e. the
observations by Bainbridge 1963 of tail fins of swimming dace).
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Figure 9. Motions of the body when the leading edge is driven with heaving and pitching
at the optimal phases for thrust, as given in figures 8(c) and 8(f ). Three wavenumbers and
two vortex street spacings are used. The motions when l/L=1, small enough for the phases in
figure 8 to have nearly converged in the long-body limit, are shown in (a–f ). The motions for
phases when l/L = 103, near the short-body limit, are shown in (g–l ); in the figure l/L = 4 to
make the bodies visible. The first column gives the motions when the optimal heaving phase
is applied (without pitching). The second column gives the motions when the optimal pitching
phase is applied (without heaving). The third column shows a superposition of the heaving
and pitching with the same amplitudes relative to one another as in the first two columns.

In figure 9 we plot the swimming motions corresponding to the phases of heaving
and pitching for maximum thrust force. The widths of the vortex streets d/l are
arbitrary (but significantly larger than 1/π). Figures 9(a)–9(f ) are for l/L = 1, which
is sufficiently small to approximate the behaviour of the phases in the limit of small
l/L given in figures 8(c) and 8(f ). We first take a body shape with k = 0.8, which lies
in the dotted regions for both heaving and pitching in figures 8(b) and 8(e). For small
l/L, the phases are 45◦ on average (from figures 8c and 8f ). Applying heaving alone
to the body with 45◦ phase results in the trajectories of figure 9(a), which are eight
snapshots over a period. Instead of moving the vortices downstream with the body’s
streamwise position fixed as in figure 1, we move the body upstream with the vortex
street fixed for visual clarity. Applying pitching alone to the body with 45◦ phase
results in the trajectories of figure 9(b), which are similar to those of figure 9(a), but
with non-zero slope at the leading edge. Superposing the trajectories of figures 9(a)
and 9(b) gives those of figure 9(c). From the trace of the trailing edge, we see that the
body’s trailing edge is sloped towards the nearest vortex. At phases zero (solid line)
and 90◦ (dashed line), figure 3 shows that there is a suction force on the side of the
body facing the vortex. Since this side is also facing upstream, there is a net thrust
force on the body.
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The other type of optimal swimming behaviour is exemplified by that which occurs
at k = 1.7, for which figure 8(b) is no longer dotted; so the heaving phase is now
given by the solid lines in figure 8(c), opposite to that of the previous case. The
optimal pitching phase remains unchanged at this value. In figures 9(d )–9(f ), we give
the body trajectories under heaving alone, pitching alone and heaving and pitching
combined. Now the superposition of the bodies yields a shape sloped mainly at the
leading edge instead of the trailing edge. The reason for this significant change in
shape is that the pressure jump in figure 3(b) is largest at the leading edge. For each
snapshot in figure 9(e), the slope near the leading edge is similar to that along the
whole body in figure 9(b) – both are responsible for thrust. The now-opposite slope
at the trailing edges in figure 9(e) subtracts relatively little from the thrust because
the pressure is small near the trailing edge (figure 3b).

For larger l/L, the optimal phases in figures 8(c) and 8(f ) increase by 45◦. Since
the body is relatively short, it experiences a nearly uniform flow which is maximum
when the body is displaced by 90◦ with respect to the vortices. The corresponding
pressure loading (figure 4b) is maximum at this phase. Because the pressure loading
at 90◦ phase is a downward force, away from the upper vortex, the body now slopes
downward for maximum thrust in figures 9(g)–9(i ) when it lies 90◦ advanced from a
vortex in the upper street. Here k = 0.8, and the phases are for l/L = 103, near the
asymptotic limit in figure 8. In the figure l/L is only 4, however, to make the bodies
visible. Figures 9(k )–9(l ) show the optimal trajectories for k = 1.7, where the body
shows a similar slope, but again confined to the leading edge, where the pressure
force is largest.

Here we use Γ/lU = 0.1, a reverse von Kármán street. For a regular von Kármán
street, shed by a static bluff body in a stream, Γ/lU is reversed in sign, and so is
the pressure loading P and the optimal trajectories in figure 9. Thus the motions in
figure 9 should be reversed for a regular von Kármán street.

The power input is the work per unit time done by the body against the fluid. Its
period average is

〈Pin〉 =

∫ 1

0

∫ 1

−1

[p](x, t)∂th(x, t)dxdt, (3.38)

〈Pin〉 =

∫ 1

0

{
−R2∂xxh ∂xth

∣∣∣
x=−1

+ R2∂xxxh ∂th

∣∣∣
x=−1

}
dt (3.39)

The second equation follows from the first by inserting for [p] from (3.1), integrating
by parts using boundary conditions (3.5) and using the time periodicity of the body
motion. The second equation shows that the average power done against the fluid is
also the time average of the power supplied by torque −R2∂xxh times angular velocity
∂xth and normal force R2∂xxxh times normal velocity ∂th at the leading edge.

In terms of the H and P , (3.38) reads

〈Pin〉 =
1

2

∫ 1

−1

Re(P̄ (x)2πiH (x))dx, (3.40)

〈Pin〉 =
1

2

∫ 1

−1

{
H0Re(P̄ (x)eiφH 2πiH2H0(x)) + Θ0Re(P̄ (x)eiφθ 2πiH2T h0(x))

}
dx.

(3.41)

To obtain (3.41) from (3.40), we have decomposed H into H1 + H2 as in (3.12). The
contribution to (3.39) from H1 is zero because H1 is clamped at the leading edge. The
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form of (3.41) is similar to that of the average horizontal force (3.29), except that the
spatial derivative of H2 is now a time derivative.

We wish to consider swimming motions which are optimal for mechanical efficiency.
One measure of efficiency is the Froude efficiency, the ratio of the output power to
the input power. The output power for swimming is defined as the product of the
horizontal force Fx with the horizontal swimming velocity of the body or the negative
of the free-stream speed −U , which is non-dimensionalized by multiplying by the
time scale l/Uc and dividing by the length scale L. The non-dimensional negative
free-stream speed is

− U

Uc

l

L
= − 1

1 + Γ/2lU

l

L
. (3.42)

A complication which arises when considering swimming in a vortex street (noted by
Streitlien et al. 1996) is that the input power can be negative even when the thrust
is positive. In other words, the pressure forces from the vortex street may put the
body in a configuration yielding thrust while doing positive work on the body. Then
the Froude efficiency becomes negative even though the body gains useful thrust and
extracts energy from the vortices. It is more useful (as found by Streitlien et al. 1996)
to consider the efficiency as simply the difference 〈Pout〉 − 〈Pin〉 and determine the
phases for heaving and pitching which maximize this efficiency. We thus maximize

η = − 1

1 + Γ/2lU

l

L
〈Fx〉 − 〈Pin〉, (3.43)

where 〈Fx〉 is given in (3.21) and 〈Pin〉 is given in (3.41). Here the body attempts
to extract energy from the street while performing a thrust-yielding motion; this
energy may be used to overcome viscous forces or internal viscoelastic dissipation.
We maximize the part ηH2 of η which depends on the leading-edge driving H2:

ηH2 =
1

2

∫ 1

−1

H0Re

(
P̄ (x)eiφH

(
−1

1 + Γ/2lU

l

L
∂xH2H0(x) − 2πiH2H0(x)

))

+ Θ0Re

(
P̄ (x)eiφθ

(
−1

1 + Γ/2lU

l

L
∂xH2T h0(x) − 2πiH2H0(x)

))
dx. (3.44)

We again consider only the optimal phases φH and φθ and assume small amplitudes
H0 and Θ0.

In figure 10 we plot the phases of (a, b) heaving and (c, d ) pitching with respect
to the position of the body’s trailing edge, which maximize the efficiency ηH2. These
may be compared with figures 8(b), 8(c), 8(e) and 8(f ), where thrust alone has been
optimized. The patterns of contours are similar in the two cases. For large l/L, the
thrust terms in (3.44) dominate, and the phases which maximize efficiency and thrust
converge. For small l/L, the input power terms dominate, which leads to phase shifts
of approximately ±90◦ between the plots in figures 8(c) and 8(f ) and figures 10(b)
and 10(d ). The imaginary unit i in equation (3.41) is mainly responsible for this phase
shift. For heaving at small l/L (figure 10b), the phase may be shifted up or down by
90◦ depending on the value of k (i.e. the shape of the body).

We have seen that the characteristic of the swimming shape which increases its
output power is the correlation between the negative of its slope and the pressure
jump; the characteristic which decreases input power is the correlation between the
negative of the transverse velocity and the pressure jump. In figure 11 we plot the
body motions corresponding to the optimal phases for efficiency, again at the values
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Figure 10. Contour plots of the optimal-efficiency phases for (a, b) the driving amplitude H0

and (c, d ) the pitching angle Θ0. The phase with zero phase centred on the body’s trailing edge
is shown in (a) and (c). The variation of phase along vertical lines in (a) and (c) is shown in
(b) and (d ). The dotted lines give the phases for the dotted regions in (a) and (c); the solid
lines give the phases in the remaining regions.

l/L = 1 and l/L = 103 and at the two wavenumbers k = 0.8 and k = 1.7. For small
l/L, the traces of the trailing edges show that the shapes are approximately ±90◦

apart from those in figure 9 in phase.
For k = 0.8 and l/L = 1 (first row of figure 11), heaving and pitching motions add

constructively and yield a body motion which is delayed in phase by 90◦ from that
in the first row of figure 9. The body is still sloped upward in the first frame, when
there is a suction force on its upper face yielding thrust. Because of the phase shift
from figure 9, its velocity is also upward in the first frame; so it extracts energy from
the upward suction force. When the pressure force has changed sign 90◦ later in the
period, the body is now moving downward with large velocity. Hence it obtains thrust
and extracts energy from the vortex street. For k = 1.7 (second row of figure 11) the
body deflection and slope are nearly the opposite of those in the first row near the
trailing edge but nearly the same near the leading edge. Because the pressure forces
are largest near the leading edge, the leading edge determines the motion. At large
l/L, the output power dominates the input power in the efficiency (3.44); so the third
and fourth rows of figure 11 are essentially the same as in figure 9. As before, these
motions correspond to a reverse von Kármán street, with Γ/lU = 0.1. For a regular
von Kármán street, the motions should be inverted about the centreline.
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Figure 11. Motions of the body when the leading edge is driven with heaving and pitching at
the optimal phases for efficiency, as given in figures 10(b) and 10(d ). Two different wavenumbers
and two difference vortex street spacings are shown. The motions when l/L = 1, small enough
for the phases in figure 10 to have nearly converged in the long-body limit, are shown in
(a)–(f ). The motions in the limit of large l/L are shown in (g)–(l ). The first column gives the
motions when the optimal heaving phase is applied (without pitching). The second column
gives the motions when the optimal pitching phase is applied (without heaving). The third
column superposes motions from the first two columns, with the same relative amplitudes as
in the first two columns. Here we assume a reverse von Kármán street, Γ/lU = 0.1.

4. Body driven along its length
We now apply (3.21) to a body with motion prescribed everywhere along its length.

In general the optimization problem will not have a solution unless constraints are
applied to enforce a given amplitude or smoothness of the motion (Sparenberg 1995).

We first consider the body motion which maximizes average thrust for a given
(small) mean amplitude. Fixing the time-averaged amplitude of deflection to be A,
the Lagrangian and its variation are

L = −〈Fx〉 − λ

(
1

4

∫ 1

−1

|H |2dx − A2

)
, (4.1)

δL =
1

2

∫ 1

−1

(−PRδH ′
R − PIδH

′
I − λ(HRδHR + HIδHI ))dx, (4.2)

δL = −1

2
(PRδHR + PIδHI )

∣∣∣1
−1

+
1

2

∫ 1

−1

((P ′
R − λHR)δHR + (P ′

I − λHI )δHI ) dx.

(4.3)
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The solution to the variational equation is

H = AP ′
/ (

1

2

∫ 1

−1

|P ′|2dx

)1/2

. (4.4)

Because P behaves like an inverse square root of distance from the leading edge and
a square root of distance from the trailing edge, the integral in the denominator of
(4.4) is divergent at both endpoints.

A simple alternative constraint is to fix the mean square of the slope, which means
replacing H in (4.1) by H ′. Fixing the mean-square slope also bounds the maximum
displacement |H | (since displacement is the integral of the slope). The Lagrangian
becomes

L1 = −〈Fx〉 − λ

(
1

4

∫ 1

−1

|H ′|2dx − A2
1

)
, (4.5)

δL1 =
1

2

∫ 1

−1

(−PRδH ′
R − PIδH

′
I − λ(H ′

RδH ′
R + H ′

I δH
′
I )) dx, (4.6)

δL1 = −1

2
((PR + λH ′

R)δHR + (PI + λH ′
I )δHI )

∣∣∣1
−1

+
1

2

∫ 1

−1

((P ′
R + λH ′′

R)δHR + (P ′
I + λH ′′

I )δHI ) dx. (4.7)

Before stating the solution we note that it is also possible to constrain the mean-
square curvature, which is related to the internal viscous damping in the body (such
as that due to internal connective tissue (Cheng, Pedley & Altringham 1998; Alben
2009).

The minimizer of L1 is

HA1 = −1

λ

∫ x

−1

P (x) + c1x + c0, (4.8)

where c1 and c0 are constants set by the free boundary conditions on H , given by
setting the coefficients of boundary terms in (4.7) to zero. These conditions imply
c1 = 0. The constant c0 does not affect L1, so it is arbitrary. We set it by setting the
average of H1 equal to zero, consistent with small displacements. The solution H1

then becomes

HA1 = −A1

(∫ x

−1

P − 1

2

∫ 1

−1

dx

∫ x

−1

Pdx ′
)/ (

1

4

∫ 1

−1

|P |2dx

)1/2

. (4.9)

The average thrust force corresponding to HA1 is

−〈Fx〉 = −1

2

∫ 1

−1

Re(P̄ (x)H ′
A1(x))dx = 2A1. (4.10)

If HA1(x) + f (x) is another body motion which has mean-square slope equal to A1,
i.e.

1

4

∫ 1

−1

|H ′
A1 + f ′|2dx = A2

1, (4.11)
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Figure 12. (a, c) Swimming shapes which optimize thrust (4.9) or (b, d ) efficiency (4.15), for
fixed mean slope. Here (a, b) l/L=0.4 or (c, d ) l/L = 103.

then the average thrust force is

−〈Fx〉 = −1

2

∫ 1

−1

Re(P̄ (x)(H ′
A1 +f ′))dx = 2A1 −

(
1
4

∫ 1

−1
|P |2dx

)1/2

4A1

∫ 1

−1

|f ′|2dx, (4.12)

which is clearly less than 2A1 for non-zero f . The final expression in (4.12) follows
by substituting a term proportional to H ′

A1 for P in the middle expression, using (4.9)
and the slope constraint (4.11).

The Lagrangian corresponding to (4.6) for maximum efficiency is given by

L1e =
1

2

∫ 1

−1

Re

(
P̄

(
−1

1 + Γ/2lU

l

L
∂xH − 2πiH

))
dx − λ

(
1

4

∫ 1

−1

|H ′|2dx − A2
1

)
,

(4.13)

δL1e =
1

2

((
−1

1 + Γ/2lU

l

L
PR − λ

2
H ′

R

)
δHR +

(
−1

1 + Γ/2lU

l

L
PI − λ

2
H ′

I

)
δHI

) ∣∣∣1
−1

− 1

2

∫ 1

−1

((
−1

1 + Γ/2lU

l

L
P ′

R − λ

2
H ′′

R + 2πPI

)
δHR

+

(
−1

1 + Γ/2lU

l

L
P ′

I − λ

2
H ′′

I − 2πPR

)
δHI

)
dx. (4.14)

The solution is

λ

2
H = −

∫ x

−1

1

1 + Γ/2lU

l

L
Pdx ′ − 2πi

∫ x

−1

∫ x′

−1

Pdx ′′dx ′ + c0, (4.15)

where constant λ is set so that H has mean-square slope equal to A1. The free constant
c0 can be chosen to decrease the input power without affecting the constraint. An
additional constraint is thus required to fix c0. Perhaps the simplest constraint is the
same as was used for HA1 (4.9), which is to make the mean displacement of the body
zero. We thus focus attention on the particular shape the body assumes but not its
mean heaving motion.

In figure 12 we plot optimal swimming shapes for l/L = 0.4 and 103, values in
the asymptotic regimes of § 3.4. For small l/L, the optimal thrust shape (figure 12a)
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agrees well with those in the first row of figure 9. There is an additional curvature
near the leading edge here, due to the large pressure there. The optimal-efficiency
shape (figure 12b) resembles those in the first row of figure 11, in terms of the phase
of the trailing-edge motion relative to the vortices; it is closest in wavenumber to
these slightly flexed plates. Again, a larger slope is seen at the leading edge to take
advantage of the larger pressure there. For larger l/L, the optimal thrust motion
(figure 12c) has a slope similar to those in figures 9 and 11, but here there is no net
heaving motion. The shapes now have large curvatures to take advantage of large
thrust near the leading edge.

5. Conclusion
We have studied optimal swimming of a finite body in a vortex street in the limit

of small body motions, where the linearized theory is valid. In § 2 we have computed
the distribution of vorticity and pressure in the flow with respect to the strength of
the vortex street relative to the background flow (Γ/lU ) and the streamwise spacing
of the vortices relative to the body half-length (l/L). The vorticity on the body is
sinusoidal away from the body ends for a long body (l/L � 1) and is roughly linear
away from the ends for a short body, when the body is between vortices, and nearly
zero when the body coincides with a vortex in streamwise position. The pressure
loading on the body is also oscillatory away from the ends for l/L � 1 and is nearly
proportional to the bound vorticity for l/L � 1.

We have studied two models for the body. In the first (§ 3), the body is clamped
or oscillated at the leading edge. The input and output forces are computed with
respect to body mass R1 and flexibility R2. The clamped body models a passive elastic
body (such as a flapping flag) in a vortex wake. The vortices cause thrust at the
lowest wavenumber mode and alternating thrust and drag in higher modes. These
body motions may be linearly superposed with the flag in a uniform stream to obtain
the effect of the vortex street for the fully coupled problem. The body driven at the
leading edge is a model for the tail fin of a swimming fish. We identify optimal phases
for heaving and pitching motions of the body which have clear limiting values at
small l/L and large l/L, when phase is measured with respect to the alignment of the
trailing edge with an upper vortex. For short bodies maximizing thrust or efficiency,
we find deflections away from oncoming vortices in a reverse von Kármán street and
towards oncoming vortices in a regular von Kármán street. For long bodies, optimal
motions at the trailing edge are phase-shifted from those for a short body by 45◦

when thrust is maximized and by 135◦ when efficiency is maximized. Optimal phases
for intermediate lengths interpolate these values smoothly.

In the second model for the body (§ 4), its motion is prescribed along its length. We
identify optimal swimming motions for maximum thrust and efficiency, subject to a
constraint of fixed mean body slope. We find shapes which are similar to the lowest
wavenumber shapes driven at the leading edge, but with an additional upward slope
near the leading edge. This indicates that a body driven only at one end may obtain
a performance nearly as good as a body driven all along its length. In applications
to fish swimming, this supports the more frequent utilization of tail-fin swimming
(carangiform and sub-carangiform) over whole-body (anguilliform) swimming, for
which internal viscous energy losses are larger (Lighthill 1969).

Liao et al. (2003) observed trout slaloming around the vortices of an oncoming
von Kármán street in their experiment. The leading edge of the trout body led
the passage of vortices by approximately 100◦ in phase (on average), while for the
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trailing edge the phase was 240◦ and for the midpoint 180◦. Also, muscle activity was
concentrated near the leading edge of the body, similar to the model of a body driven
passively at the leading edge in § 3. In the present work, the model most similar to
this situation is the body driven all along its length (§ 4). In the model, the pressure
forces near the leading edge is dominant, and the motion of the leading edge is close
in phase (ranging from 80◦ to 100◦) to that observed by Liao and Lauder, for both
the optimum thrust and optimum efficiency shapes and l/L of order 1. The phase at
the trailing edge varies over a wider range in the model. By contrast, the heaving and
pitching rigid aerofoil studied by Streitlien and Triantafyllou (Streitlien et al. 1996)
generally showed larger lift and thrust when the leading edge of the aerofoil moved
at nearly zero phase relative to the oncoming vortex street. The reason may be that
at large heaving amplitudes, the aerofoil can be sensitive to the singular velocity near
the point vortex.

This work was supported by the National Science Foundation Division of
Mathematics Sciences, grant NSF-DMS-0810602.

Appendix. Constants in driven (or clamped) fin solution
The constants C1, C2, C3, C4 in (3.10) are

C1 = − e−k

4k3

I2D1 − I1D2 + k2e2kD3Θ0 − k3e2kD4H0

F1

, (A 1)

C2 =
ek

4k3

k2D1Θ0 + k3H0D2 + e2kD3I2 + e2kD4I1

F1

, (A 2)

C3 =
1

2k3

(−I2 + k2Θ0) cosh k + (I1 + k3H0) sinh k

F2

, (A 3)

C4 =
1

2k3

(I2 + k2Θ0) sinh k + (−I1 + k3H0) cosh k

F3

, (A 4)

D1 = e2k + sin(2k) + cos(2k), (A 5)

D2 = e2k − sin(2k) + cos(2k), (A 6)

D3 = e−2k − sin(2k) + cos(2k), (A 7)

D4 = e−2k + sin(2k) + cos(2k), (A 8)

F1 = 1 + cosh(2k) cos(2k), (A 9)

F2 = cosh(k) cos(k) − sinh(k) sin(k), (A 10)

F3 = cosh(k) cos(k) + sinh(k) sin(k), (A 11)

I1 = − 1

2R2

[
e−k

2

∫ 1

−1

ekx′
P (x ′)dx ′ − ek

2

∫ 1

−1

e−kx′
P (x ′)dx ′ (A 12)

+ cos(k)

∫ 1

−1

sin(kx ′)P (x ′)dx ′ − sin(k)

∫ 1

−1

cos(kx ′)P (x ′)dx ′
]

, (A 13)

I2 = − 1

2R2

[
−e−k

2

∫ 1

−1

ekx′
P (x ′)dx ′ − ek

2

∫ 1

−1

e−kx′
P (x ′)dx ′ (A 14)

− sin(k)

∫ 1

−1

sin(kx ′)P (x ′)dx ′ − cos(k)

∫ 1

−1

cos(kx ′)P (x ′)dx ′
]

. (A 15)



Passive and active bodies in vortex-street wakes 125

REFERENCES

Abrahams, M. V. & Colgan, P. W. 1987 Fish schools and their hydrodynamic function: a reanalysis.
Environ. Biol. Fishes 20 (1), 79–80.

Alben, S. 2008a Optimal flexibility of a flapping appendage at high Reynolds number. J. Fluid
Mech. 614, 355–380.

Alben, S. 2008b The flapping-flag instability as a nonlinear eigenvalue problem. Phys. Fluids 20,
104–106.

Alben, S. 2009 On the swimming of a flexible body in a vortex street. J. Fluid Mech. 635, 27–45.

Alben, S., Madden, P. G. & Lauder, G. V. 2007 The mechanics of active fin-shape control in
ray-finned fishes. J. R. Soc. Interface 4 (13), 243–256.

Alben, S., Shelley, M. & Zhang, J. 2004 How flexibility induces streamlining in a two-dimensional
flow. Phys. Fluids 16, 1694.

Ambrose, D. M. & Wilkening, J. 2008 Global paths of time-periodic solutions of the Benjamin–Ono
equation connecting arbitrary travelling waves. Preprint. ArXiv:0811.4205.

Bainbridge, R. 1963 Caudal fin and body movement in the propulsion of some fish. J. Exp. Biol.
40 (1), 23–56.

Barrett, D. S., Triantafyllou, M. S., Yue, D. K. P., Grosenbaugh, M. A. & Wolfgang, M. J.

1999 Drag reduction in fish-like locomotion. J. Fluid Mech. 392, 183–212.

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics . Cambridge University Press.

Bisplinghoff, R. L. & Ashley, H. 2002 Principles of Aeroelasticity . Dover.

Cheng, J.-Y., Pedley, T. J. & Altringham, J. D. 1998 A continuous dynamic beam model for
swimming fish. Phil. Trans. R. Soc. Lond B 353, 981–997.

Drucker, E. G. & Lauder, G. V. 2001 Locomotor function of the dorsal fin in teleost fishes:
experimental analysis of wake forces in sunfish. J. Exp. Biol. 204 (17), 2943–2958.

Drucker, E. G. & Lauder, G. V. 2005 Locomotor function of the dorsal fin in rainbow trout:
kinematic patterns and hydrodynamic forces. J. Exp. Biol. 208 (23), 4479–4494.

Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered
flexible plates in uniform flow. J. Fluid Mech. 611, 97–106.

Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 2001 Boundary integrals methods for
multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302–362.

Jones, M. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech.
496, 405–441.

Krasny, R. 1991 Vortex sheet computations: roll-up, wakes, separation. Lect. Appl. Math. 28,
385–402.

Liao, J. C., Beal, D. N., Lauder, G. V. & Triantafyllou, M. S. 2003 Fish exploiting vortices
decrease muscle activity. Science 302 (5650), 1566–1569.

Lighthill, J. M. 1969 Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1,
413–446.

Lissaman, PBS & Shollenberger, C. A. 1970 Formation flight of birds. Science 168 (3934),
1003–1005.

Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags.
Phys. Rev. Lett. 101 (19), 194502.

Saffman, P. 1992 Vortex Dynamics . Cambridge University Press.

Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations
in flowing water. Phys. Rev. Lett 94, 094302.

Sparenberg, J. A. 1995 Hydrodynamic Propulsion and Its Optimization: Analytic Theory . Springer.

Streitlien, K., Triantafyllou, G. S. & Triantafyllou, M. S. 1996 Efficient foil propulsion through
vortex control. AIAA J. 34 (11), 2315–2319.

Thwaites, B. 1987 Incompressible Aerodynamics: An Account of the Theory and Observation of the
Steady Flow of Incompressible Fluid Past Aerofoils, Wings and Other Bodies . Dover.

Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290–291.

Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P. & Jiraskova, S. 2001 Energy saving
in flight formation. Nature 413 (6857), 697–698.

Wu, T. Y. 1971 Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional
flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46 (2), 337–355.

Wu, T. Y. & Chwang, A. T. 1975 Extraction of flow energy by fish and birds in a wavy stream.
In Swimming and Flying in Nature (ed. T. Y.-T. Wu, C. J. Brokaw & C. Brennen), vol. 2,
pp. 687–702. Plenum.


